Gao Laboratory
Publications
Books / Book Chapters
B1
H. Hu, L. Gao, Y. Liu. Wind Turbine Icing Physics and Anti-/De-icing Technology, Paperback ISBN: 9780128245323, Elsevier, Publish date: 09-01-2022.
Patents
P2 J. Hong, & L. Gao. (2021). Control wind turbine based on wind veer. U.S. Patent Application No. 63/199,871.
P1 J. Hong, & L. Gao. (2020). Systematic control framework for wind turbines in cold climate regions. U.S. Patent Application No. 63/052,212.
Referred Journal Papers
# Mentored student, * Corresponding author
2024
J25
D. Astolfi, F. De Caro, M. Pasetti, L. Gao, R. Pandit, A. Vaccaro, J. Hong, Investigation of wind turbine static yaw error based on utility-scale controlled experiments. IEEE Transactions on Industry Application. (2024) 1–10. https://doi.org/10.1109/TIA.2024.3397956
2023
J24
X. Bai, T. Tao, L. Gao, C. Tao, Y. Liu, Wind turbine blade icing diagnosis using RFECV-TSVM pseudo-sample processing. Renewable Energy. 211 (2023) 412–419. https://doi.org/10.1016/j.renene.2023.04.107
2022
J23
D. Astolfi, R Pandit, L. Gao, J. Hong, Individuation of wind turbine systematic yaw error through SCADA data, Energies. 15 (2022) 8165. https://doi.org/10.3390/en15218165
J22
L. Gao, T. Dasari, J. Hong, Wind farm icing loss forecast pertinent to winter extremes. Sustain. Energy Technol. Assessments. 50 (2022) 101872. https://doi:10.1016/j.seta.2021.101872
J21
L. Swenson#, L. Gao, J. Hong, L. Shen, An efficacious model for predicting icing-induced energy loss for wind turbines. Applied Energy. 305 (2022) 117809. https://doi:10.1016/j.apenergy.2021.117809
2021
J20
L. Gao, J. Hong. Data-driven yaw misalignment correction for utility-scale wind turbines. Journal of Renewable and Sustainable Energy. 13 (2021) 063302. https://doi.org/10.1063/5.0056671 (Editor’s pick)
J19
L. Gao, H. Hu, Wind turbine icing characteristics and icing-induced power losses to utility-scale wind turbines, Proc. Natl. Acad. Sci. 118 (2021) e2111461118. https://doi:10.1073/pnas.2111461118
J18
T. Tao, Y. Liu, Y. Qiao, L. Gao, J. Lu, C. Zhang, Y. Wang, Wind turbine blade icing diagnosis using hybrid features and Stacked-XGBoost algorithm. Renewable Energy. 180 (2021) 1004–1013. https://doi:10.1016/j.renene.2021.09.008
J17
L. Gao, T. Tao, Y. Liu, and H. Hu, A field study of ice accretion and its effects on the power production of utility-scale wind turbines. Renewable Energy. 167 (2021) 917-928. https://doi.org/10.1016/j.renene.2020.12.014
J16
L. Ma, Z. Zhang, L. Gao, Y. Liu, H. Hu. Bio-inspired icephobic coatings for aircraft icing mitigation: A critical review. Progress in Adhesion and Adhesives. 6(2021) 171-201. https://doi.org/10.1002/9781119846703.ch7
2020
J15
L. Gao, J. Hong. Wind turbine performance in natural icing environments: A field characterization. Cold Regions Science and Technology. 181 (2020) 103193. https://doi.org/10.1016/j.coldregions.2020.103193
J14
L. Gao, B. Li#, J. Hong. Effect of wind veer on wind turbine power generation. Physics of Fluids. 33 (2021) 015101. https://doi.org/10.1063/5.0033826
J13
R. He#, L. Gao, M. Trifonov, J. Hong. Aerosol generation from different wind instruments. Journal of Aerosol Science. 151 (2020) 105669. https://doi.org/10.1016/j.jaerosci.2020.105669
J12
L. Ma, Z. Zhang, L. Gao, Y. Liu, H. Hu. An exploratory study on using Slippery-Liquid-Infused-Porous-Surface (SLIPS) for wind turbine icing mitigation. Renewable Energy. 162 (2020) 2344–2360. https://doi.org/10.1016/j.renene.2020.10.013
J11
L. Gao, S. Yang#, A, Abraham, J. Hong, Effects of inflow turbulence on the structural response of wind turbine blades. Journal of Wind Engineering & Industrial Aerodynamics. 199 (2020) 104137. https://doi.org/10.1016/j.jweia.2020.104137
J10
L. Gao, Y. Liu, H. Hu. An experimental investigation on the dynamic glaze ice accretion process over a wind turbine airfoil surface. International Journal of Heat and Mass Transfer. 149 (2020) 119120. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119120
J09
R.Veerakumar, L. Gao, Y. Liu, H. Hu. Dynamic ice accretion process and its effects on the aerodynamic drag characteristics of a power transmission cable model. Cold Regions Science and Technology. 169 (2020) 102908 https://doi.org/10.1016/j.coldregions.2019.102908
2019
J08
L. Gao, R. Veerakumar, Y. Liu, and H. Hu. Quantification of the 3D shapes of the ice structures accreted on a wind turbine airfoil model. Journal of Visualization. 2019. https://doi.org/10.1007/s12650-019-00567-4
J07
L. Gao, Y. Liu, L. Ma, H. Hu. A hybrid strategy combining the minimized leading-edge electric-heating and the superhydro-/ice-phobic surface for wind turbine icing mitigation. Renewable Energy. 140 (2019) 943-956. https://doi.org/10.1016/j.renene.2019.03.112
J06
L. Gao, Y. Liu, W. Zhou, and H. Hu. An experimental study on the aerodynamic performance degradation of a wind turbine blade model induced by ice accretion process. Renewable Energy. 133 (2019) 663-675. https://doi.org/10.1016/j.renene.2018.10.032
J05
L. Gao, Y. Liu, H. Hu. An experimental investigation of dynamic ice accretion process on a wind turbine airfoil model considering various icing conditions. International Journal of Heat and Mass Transfer. 133 (2019) 930-939. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.181
Before 2018
J04
L. Gao*, H. Zhang, Y. Liu, S. Han. Effects of vortex generators on a blunt trailing-edge airfoil for wind turbines. Renewable Energy. 76 (2015) 303-311. https://doi.org/10.1016/j.renene.2014.11.043
J02
Y. Liu, J. Yan, S. Han, I. David, D. Tian, L. Gao. An optimized short-term wind power interval prediction method considering NWP accuracy. Chinese Science Bulletin. 59 (2014) 1167–1175. https://doi.org/10.1007/s11434-014-0119-7
J01
S. Han, L. Gao, Y. Liu, W. Yang. Post evaluation of wind resource assessment and micro-siting. Journal of Power and Energy Engineering. 02 (2014) 288-296. http://doi.org/10.4236/jpee.2014.24040