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A B S T R A C T   

Wind turbine blade icing seriously affects turbine power generation and fatigue life, and an accurate diagnosis of 
blade icing is beneficial for wind turbines to make in-time adjustments. However, the high dimensional and 
unbalanced original data recorded by Supervisory Control and Data Acquisition (SCADA) systems pose great 
challenges to the accurate diagnosis of blade icing. To effectively address the challenges of difficult feature 
extraction and small number of fault samples, we propose a data processing method based on pseudo-sample 
processing. Specifically, Recursive Feature Elimination and Cross-Validation (RFECV) is used to analyze the 
influence of various SCADA features on the diagnostic model and select the most compelling feature set. A 
Transductive Support Vector Machine (TSVM) is implemented to regenerate unlabelled samples. The labeled 
pseudo samples and ice data are combined to form the training set. The effectiveness of the proposed method is 
examined using the three most commonly used classifier algorithms, i.e., Random Forest (RF), Support Vector 
Machine (SVM), and XGBoost, for four utility-scale wind turbines. The results show that this method can 
effectively obtain the optimal selection, utilize unlabelled samples, and improve the diagnostic accuracy of the 
model, especially for small sample data, with an average accuracy improvement of 10.06%.   

1. Introduction 

With the increasing depletion risks of fossil fuels and the rapid 
development of renewable energy technologies, the rational usage of 
renewable energy plays an essential role in ensuring global energy se-
curity [1,2]. As one of the fastest-growing renewable energy sources in 
the world, wind power has become one of the most commercially viable 
forms of renewable energy [3]. However, approximately 20% of 
worldwide wind turbines are located in ice-prone areas with appreciable 
blade icing issues during winters [4]. The significant negative effects of 
blade ice include annual energy production loss, shortened wind turbine 
lifespan, and threats to personnel safety. Specifically, the annual power 
generation loss associated with the ice-induced stops and degradations 
can each up to 50% [5]. The amount of ice accreted at different blade 
spanwise or edgewise locations of the blades are uneven, and thus the 
unbalanced loads formed may accelerate the turbine fatigue damage. In 
addition, blade ice can be thrown out by centrifugal force and gravity 
from the rotating turbine blades, seriously threatening the safety of 

personnel [6–8]. 
Researchers in the wind energy community have conducted exten-

sive studies on blade icing diagnosis, which can be divided into direct 
and indirect methods. The direct method is the direct monitoring of the 
blade surface by equipment or instruments, including but not limited to 
various icing sensors [9], camera imaging [10], and hyperspectral im-
aging [11]. The indirect method links blade characteristics and icing 
features, including the physics-driven approaches [12,13] and the 
data-driven approaches. The physics-driven approaches highly rely on 
small-scale measurement results and such trends may not be able to 
apply to utility-scale wind turbines. The data-driven strategies have 
fewer requirements for the experimental facilities and mainly depend on 
the recorded data in the utility-scale turbine Supervisory Control and 
Data Acquisition (SCADA) systems [14–16]. Such approaches are more 
suitable for large-scale wind turbine applications. However, the re-
searchers may often encounter issues, such as high dimensionality, data 
imbalance, or incorrect data labels, when dealing with the SCADA data. 

Consequently, feature engineering is a promising tool to improve 
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diagnostic accuracy for data-driven approaches [15]. The SCADA sys-
tems record more than 100 wind turbine parameters. Such features may 
have different sensitivities to the icing process, while they may have 
linear relationships among them. The direct use of the original features 
is likely to cause feature redundancy and affect the accuracy of icing 
diagnosis. The feature screening and reconstruction are of vital impor-
tance. The current feature engineering for blade icing can be classified 
into two main categories: 1) The icing mechanism: Tao et al. [16] 
established the icing diagnosis model based on the icing and wind en-
ergy conversion principles. Xu et al. [17] selected features from the 
process of blade icing to build the diagnostic model. 2) The importance 
of features: Xiao et al. [18] ranked the importance of features based on 
the Chi-square test and eliminated the last feature in turn to form a 
feature subset. Wen et al. [19] reduced the data dimensionality using the 
ReliefF algorithm, and then further reduced the redundant data using 
principal component analysis. 

Imbalanced data is another barrier to accurate icing diagnostics. The 
SCADA system contains a large amount of historical data. However, in 
comparison to the non-icing dataset, the icing dataset is relatively small. 
Research on such imbalanced data can be divided into two following 
categories. First, from the data perspective, imbalanced data could be 
processed via under-sampling and over-sampling methods. The most 
representative one is the Synthetic Minority Over-Sampling Technique 
(SMOTE) algorithm proposed by Chawla et al. [20]. Han et al. [21] 
further improved the SMOTE algorithm by interpolating different clas-
ses of boundary data to generate new samples. Second, from the algo-
rithmic perspective, such methods include cost-sensitive learning and 
integration learning. Ren et al. [22] considered the sample distribution, 
the convergence trend of samples, and the adaptive sample cost to bal-
ance the data samples. Liu et al. [23] proposed two integrated learning 
algorithms, i.e., EasyEnsemble and BalanceCascad, to handle the 
imbalanced data. Note that integration learning cannot be explicitly 
used to deal with imbalanced data, which requires combining it with 
SMOTE algorithm or cost-sensitive learning [24]. 

Although the aforementioned studies significantly advance the wind 
turbine blade icing diagnosis in terms of feature extraction and imbal-
anced data processing, the following problems still need to be solved to 
achieve better icing diagnostics.  

1) Existing feature extraction methods have difficulties in extracting the 
best combination of features directly from the original SCADA data. 
Specifically, feature extraction based on the icing mechanism often 
requires new features to be modeled, resulting in an unrealistic linear 
relationship between different features. The selection of features 
according to their importance may not be the best combination. 
Some feature extraction methods are highly model-dependent. Be-
sides, the complexity of the turbine SCADA data may also hinders the 
feature extraction process.  

2) Existing imbalanced data processing methods do not fully consider 
the useful information in the SCADA data in the pre-icing and post- 
icing periods. From the data perspective, simple undersampling 
tends to lose important information for most samples, while the 
oversampling that generates samples outside the original samples 
tends to cause overfitting issues. From the algorithmic perspective, 
cost-sensitive learning may encounter difficulties in accuracy and 
total cost in practice, while integrated learning needs to be used in 
conjunction with other techniques. 

To address the above issues, we propose a data pre-processing 
approach based on Recursive Feature Elimination with Cross- 
Validation (RFECV) and Transductive Support Vector Machine 
(TSVM). First, the RFECV method is applied to the high-dimensional 
SCADA data to extract the best combination of features based on 
feature importance ranking (i.e., via the number of reliable features 
provided by cross-validation). Second, the TSVM is adapted to label the 
pseudo-samples to effectively complement to the minority samples. The 

remaining sections are organized as follows. Section 2 explains the 
specific process of feature extraction using RFECV and tagging of 
pseudo-samples using TSVM. Section 3 presents the test model, the 
evaluation criteria and the complete flowchart of the proposed method 
applied to wind turbine icing diagnostics. Section 4 shows the icing 
diagnostic performance of the proposed method using the SCADA data 
from four wind turbines, followed by the discussion on dealing with the 
small samples. Section 5 concludes the major findings of the study. 

2. Feature extraction and pseudo-sample processing 

2.1. Optimal feature subset extraction based on SVM-RFECV 

Considering the dimensionality of features and the correlation be-
tween features, raw SCADA data cannot be directly used to train the 
classification models. Deep mining or/and a suitable combination of 
features might be able to be used to determine optimal features for 
subsequent classification and improve model generalization capability. 
In this study, we use SVM-RFECV to determine an optimal feature subset 
from the original ones, which can avoid additional constructed features 
and improve the model performance simultaneously. SVM-RFECV has 
two components, i.e., SVM-RFE and CV, as shown in Fig. 1. SVM-RFE 
uses the SVM as the base model to rank each feature and omit the 
lowest scoring features [25,26]. SVM-RFE first constructs a linear SVM 
model based on the input training data set with the initial feature set. 
The discrimination function for SVM is given by Eq. (1). Then, the 
feature set is sorted in descending order according to their weight, and 
the feature with the lowest weight value is removed. The weight vector 
is computed by Eq. (2). In the next iteration, a new SVM is built based on 
the training data set of the remaining features, and the process is 
repeated until all features are removed. Finally, the features are ranked 
according to the order of omitted features. But this does not determine 
the number of features in the final feature set. Therefore, the CV algo-
rithm is introduced into the RFE algorithm, and a 5-fold crossover 
operation is used to determine the optimal number of features. 

f (x)=ωT x + b (1)  

where x is an input sample, b is a bias, ωT represents the weight vector. 

ω=
∑l

i=1
αiyixi (2) 

Fig. 1. Feature extraction using SVM-RFECV.  
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where αi is the Lagrange multipliers. 

2.2. Pseudo-sample processing based on TSVM 

Wind turbine blade icing is a complex process including pre-icing, 
icing, and post-icing periods. The previous studies usually omit the in-
fluence of the pre-icing and post-icing periods by not using such data in 
the model training process. Or some studies directly label the data in 
such periods as normal (i.e., no-icing)_data in the model training, which 
could affect the training accuracy. In this paper, the data in the pre-icing 
and post-icing periods are referred to as pseudo-samples and treated as 
unlabelled data. The icing data are referred to as absolute icing data, and 
the normal data are referred to as absolute non-icing data. These pseudo- 
samples are reclassified using TSVM to utilize all sample data. 

The TSVM, similar to the standard SVM, is a learning method for 
binary classification problems. The major difference is how they handle 
the unlabelled data. The SVM attempts to find the maximum interval 
division plane without considering unlabelled samples. In contrast, the 
TSVM, with unlabelled samples, attempts to find the hyperplane that 
separates the two classes of labeled samples and passes through the low- 
density region of the data [27], as shown in Fig. 2. 

TSVM assigns various possible markers to the pseudo-samples, tries 
to use each pseudo-sample as a positive or a negative example, and then 
determine a hyperplane that maximizes the interval over all samples 
among all results, with the optimization objective and constraints as 
described in Eq. (3). 

min
ω,b,ŷ,ξ

1
2
‖ω‖

2
2 + Cl

∑l

i=1
ξi + C+

u

∑k

i=l+1
ξi + C−

u

∑m

i=k
ξi

s.t. yi
(
ωT xi + b

)
≥ 1 − ξi, i = 1, 2, ..., l

ŷi
(
ωT xi + b

)
≥ 1 − ξi, i = l + 1, l + 2, ...,m

ξi ≥ 0, i = 1, 2, ...,m

(3)  

where (ω, b) defines a hyperplane. ξi(i= 1,2, ..., l) corresponds to 
marked samples and ξi(i= l+1, l+2, ...,m) refers to unmarked samples. 
Cl and Cu (including C+

u and C−
u ) describe the importance of marked and 

unmarked samples. C+
u and C−

u correspond to the importance of un-
marked samples based on pseudo markers used as positive and negative 

examples, respectively. 
Initialize C+

u and C−
u according to Eq. (4). 

C+
u =

u−

u+

C−
u (4)  

where u+ and u− denote the numbers of unlabelled samples used as 
positive and negative examples based on pseudo-labelling, respectively. 

3. Model evaluation criteria 

3.1. Data normalization 

To eliminate the adverse effects of different feature sizes on the 
training model and speed up the training process, the original data is 
normalized according to Eq. (5) to reduce the range of values to [0, 1]. 

x′

=
x − min(x)

max(x) − min(x)
(5)  

where x presents the data under a particular feature, and max(x) and 
min(x) refer to the maximum and minimum values under such a feature, 
respectively. 

3.2. Classifiers 

To verify the performance improvement effect after feature extrac-
tion and labelling of pseudo-samples using TSVM, we select three most 
commonly used classifiers, including Random Forest (RF), Support 
Vector Machine (SVM) and XGBoost. 

RF is an extended variant of Bagging [28]. RF further introduces 
random attribute selection in the training process of decision trees and 
uses decision tree as the base learner to build Bagging integration. 
Assuming that each sample data has N features, for each node of the base 
decision tree, a subset of n features is randomly selected from all the 
features of that node (n ≤ N). Then an optimal attribute is selected from 
this subset for division so that RF can handle high-dimensional feature 
samples well. 

SVMs have shown excellent performance in classification tasks over 
time. SVMs are widely used in diagnosis-oriented classification tasks 
[29,30]. As shown in Fig. 2, the binary classification’s blue and red 
circles represent icing and normal data. Assuming that many hyper-
planes separate the two classes of samples, the samples located on the 
margins are called support vectors. The SVM seeks to find the maximum 
sum of the distances from the two different support vectors to the hy-
perplanes. Based on the location of the test sample, it is possible to 
discern which class it belongs to. 

XGBoost is a new algorithm based on Gradient Boosted Decision 
Trees (GBDT) proposed by Chen et al. [31]. Unlike GBDT, the objective 
function of XGBoost consists of two parts: the loss function and the 
regularization term. The complexity of the model is controlled by 
introducing the regularization term to prevent overfitting. The constant 
term is removed by second-order Taylor expansion to optimize the loss 
function term and the regularization term. 

3.3. Evaluation 

According to the diagnosis results and the actual situation of wind 
turbine blade icing, the diagnostic result can be characterized into the 

Fig. 2. SVM and TSVM hyperplane segmentation.  

Table 1 
Confusion matrix of classification results.  

Predicted status 
Actual status 

− 1 1 

− 1 True Positive (TP) False Negative (FN) 
1 False Positive (FP) True Negative (TN)  
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following four categories, as shown in Table 1. “-1” and “1” represent 
icing status and normal status, respectively. TP refers to icing data being 
correctly diagnosed as icing status. FP refers to normal data being 
incorrectly diagnosed as icing status. FN refers to icing data being 
incorrectly diagnosed as normal data. TN refers to normal data being 
correctly diagnosed as normal data. 

Based on the confusion matrix, four evaluation indicators can be 
obtained, as shown in Eqs. (6)–(9). 

Precision=
TP

TP + FP
(6)  

Recall=
TP

TP + FN
(7)  

F1= 2 ×
Precision × Recall
Precision + Recall

(8)  

Accuracy=
TP + TN

TP + TN + FP + FN
(9)  

where Precision indicates the proportion of correct icing diagnostic data 
out of all data diagnosed as icing. Recall indicates the correct icing 
diagnostic data proportion out of all true icing data. F1 score indicates 
the weighted average of Precision and Recall. Accuracy indicates the 
proportion of correct diagnostic data out of all data. 

3.4. Technical frame 

Fig. 3 shows the complete flowchart of the proposed method applied 
to wind turbine icing diagnostics. Firstly, the original data is normalized 
to eliminate the influence of data dimension. Secondly, the SVM-RFECV 
mentioned in the second section is used for feature extraction. The 
feature set is verified by the training set and the test set. Thirdly, TSVM is 
used to process pseudo-samples to reduce the impact of data imbalance, 
and the method is verified. Finally, the performance improvement of the 
proposed method on small sample data is further verified. 

4. Results and discussion 

4.1. Dataset 

The SCADA data of four doubly-fed asynchronous and actively pitch- 
controlled wind turbines, denoted as A1, A2, A3 and A4, from a 
mountainous wind farm in Yunnan Province, China, are used in this 
paper. The average annual wind speed at the four turbines numbered 
A1, A2, A3, and A4 are respectively 6.39 m/s, 6.95 m/s, 6.47 m/s and 
7.66 m/s. The SCADA data contains 18 commonly used variables, as 
described in Table 2. 

The dataset is labled with “1: absolute normal”, “-1: absolute icing”, 
and “0: ten days before and after icing (all data in between is taken if less 
than ten days)”. The distribution of absolute normal and icing status 
data in the original SCADA data is imbalanced. Detailed information of 

the data from the four wind turbines are listed in Table 3. Wind turbines 
A1 and A3 have quite small datasets labeled “-1: abolute icing”, which 
take approximately of 2.5% of the entire dataset. Even severe data 
imbalance is observed for wind turbines A2 and A4, i.e., 0.3%. 

4.2. Case study 

This section focuses on discuss the influence of SVM-RFECV feature 
extraction and pseudo-sample processing on the icing diagnostic process 
using three different models. The Python language was used to process 
pseudo-samples and build the three classifiers described in Section 3.2 
on computers with an Intel Core i5-8400U processor. 

4.2.1. Icing diagnostics based on original data 
The data imbalance is severe for all of the four wind turbines. For 

wind turbine A1, 1278 × 2 data samples (half of the absolute normal 

Fig. 3. The flowchart of the proposed method applied to wind turbine icing diagnostics.  

Table 2 
Wind turbine SCADA variables used in this study.  

Feature name Feature 
description 

Feature name Feature 
description 

WIND_SPEED Wind speed TURINTTMP Nacelle 
temperature 

REAL_POWER Grid-side 
active power 

GENAPHSA Phase A 
current 

CONVERTER_MOTOR_SPEED Generator 
speed 

GENAPHSB B-phase 
current 

ROTOR_SPEED Wind turbine 
speed 

GENAPHSC C-phase 
current 

WIND_DIRECTION Wind 
direction 

GENVPHSA A-phase 
voltage 

TURYAWDIR Yaw angle GENVPHSB B-phase 
voltage 

GBXOILTMP Gear oil 
temperature 

GENVPHSC Phase C 
voltage 

GBXSHFTMP Gearbox 
bearing 
temperature 

GENHZ Motor 
frequency 

EXLTMP Ambient 
temperature 

TURPWRREACT Reactive 
power  

Table 3 
Technical parameters of the wind turbine SCADA datasets used in this study.  

Wind 
turbine # 

Total number 
of samples 

Absolute 
normal data 
“1” 

Absolute 
icing data 
“-1” 

Before and 
after icing data 
“0” 

A1 50,596 44,888 
(88.72%) 

1278 
(2.53%) 

4430 (8.76%) 

A2 50,278 48,682 
(96.83%) 

167 (0.33%) 1429 (2.84%) 

A3 50,500 44,824 
(88.76%) 

1240 
(2.46%) 

4436 (8.78%) 

A4 50,253 45,875 
(91.29%) 

190 (0.38%) 4188 (8.33%)  
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data and half of the absolute icing data) are selected using a down- 
sampling method to fully use all the absolute icing data. It’s important 
to note that the 1278 absolute normal data samples are selected from 
44,888 data at equal interval in a time series. The data samples are 
further grouped into A1_train (2045 data samples for training with 50% 
absolute icing and 50% absolution normal) and A1_test (511 data sam-
ples for testing). The three wind turbines A2, A3 and A4 extract all the 
absolute icing data as the test samples, named A2_test, A3_test and 
A4_test. For all three typical classification algorithms, RF, SVM and 
XGBoost, A1_train is used as the training set, while A1_test, A2_test, 
A3_test and A4_test are used for model testing. 

Table 4 summarizes the test results for four wind turbines using RF, 
SVM, and XGBoost based on the original data. The models trained by 
A1_train have highest accuracy in diagnosing the A1_test. The accuracy 
of all three models decreases when dealing with other turbine datasets, i. 
e., A2_test, A3_test, A4_test. The XGBoost shows the worst performance 
by decreasing 12.21% in average accuracy. This phenomenon might be 
associated with the difference turbine conditions even if they are in the 
same type. For example, the location of a wind turbine in a wind farm 
has a great effect on blade icing. On the one hand, under the influence of 
upstream wind turbines, the turbulence intensity of downstream wind 
turbines is relatively large, and the difference of turbulence intensity 
affects the distribution of icing data. In addition, wind speed also has an 
important effect on blade icing. On the other hand, due to the influence 
of variable pitch control, the change of wind turbine attack angle also 
affect the distribution of blade icing data. 

4.2.2. Data pre-processing based on SVM-RFECV and TSVM 
To verify the performance improvement of SVM-RFECV feature 

extraction and TSVM pseudo-sample processing, we use the methods 
proposed in Sections 2.1 and 2.2. A1_train is input as the initial set of 
features into the SVM-RFECV algorithm. Fig. 4 shows that the accuracy 
varies with the number of features during SVM-RFECV feature extrac-
tion, where the blue shaded part represents the standard deviation. As 
can be seen in Fig. 3, the SVM model in the SVM-RFECV algorithm 
achieve the highest accuracy as the number of features equals 8. 

The above finding is only derived for icing diagnosis of one wind 
turbine using a particular model. A subset of features is still needed that 
can be generalized across different turbines and different models. Thus, 
a feature subset with the number of features from 3 to 18 is obtained 
according to the SVM-RFECV algorithm. Moreover, 16 feature subsets 
are calculated with A2_test, A3_test, A4_test as test sets for accuracy 
under three typical classifiers. Comparing Figs. 4 and 5, the best 
generalization performance of the feature subset over different classifier 
models and wind turbines is observed with 8 features, i.e., wind speed, 
generator speed, wind direction, gear oil temperature, gearbox bearing 
temperature, ambient temperature, nacelle temperature and reactive 
power. This feature subset has some commonalities with the features 
obtained from the icing mechanism, such as wind speed, ambient tem-
perature, and nacelle temperature. In addition, the subset of features 
obtained based on the SVM-RFECV algorithm selection does not include 

actual active power but rather the generator speed and reactive power. 
The combination of the latter reflects not only the actual active power to 
a certain extent but also the state and performance of wind turbines. 

With the selected features, pseudo sample processing is performed on 
the original SCADA data. Wind turbine blade icing is a time-dependent 
process from ice accretion to ice natural melting, lasting from a few 
hours, a few days or even several months [32]. Considering the influence 
of environmental factors on the accretion rate of icing in different re-
gions, we use ten days of data before and after absolute icing as a 
pseudo-sample to include as much icing information as possible. In the 
initialization stage, the pseudo-labels of unmarked samples are likely to 
be inaccurate, so the value of Cl should be much larger than Cu so that 
the labeled samples can play a greater role. As the iterative process 
proceeds, the value of Cu should increase and gradually approach Cl so 
that marked samples and pseudo samples play the same role in model 
training. The above process is implemented by Cu = min{2Cu,Cl}, and 
the iterative process can be accelerated by using the 2-fold relation. In 
the process of label assignment and adjustment for unmarked samples, 
the problem of class imbalance may occur. Therefore, on the basis of 
Cu = C+

u +C−
u , C+

u and C−
u is initialized according to Eq. (4). The recali-

brated pseudo-sample not only solves the problem of insufficient orig-
inal absolute icing data but also positively impacts the icing diagnosis 
rate. Table 5 shows the training time of the model after feature selection 
and pseudo-sample processing. This is respectively compared to the time 
taken to train the model directly with the original data and the time 
taken to train the model with only the feature-selected data. The com-
parison results show that the feature-selected and pseudo-sample pro-
cessed data takes less time to train the model. This effectively 
demonstrates that the selected features and pseudo-sample processed 
data are model friendly and reduce the computational complexity. 

Fig. 6 shows the icing diagnosis accuracy with the proposed feature 
extraction and pseudo-sample processing for the three models. With 
SVM-RFECV feature extraction, RF, SVM, and XGBoost have better 
performance with increments in average accuracy of 1.49%, 1.70% and 
2.99%. With pseudo-sample processing on top of feature extraction, the 
average accuracy of the three classifiers are further improved by 1.56% 
(RF), 3.84% (SVM) and 6.24% (XGBoost), with the most significant 
improvement for XGBoost. 

4.2.3. Small-sample data 
To further demonstrate the effectiveness of the proposed method for 

small-sample data, all absolute icing data (167 samples) are extracted 
from the A2 dataset as training samples, and the training set A2_train is 

Table 4 
Results of icing diagnosis based on original features.  

Test set Models Precision Recall rate F1 score Accuracy 

A1_test RF 99.57% 100.00% 99.80% 99.77% 
SVM 100.00% 99.59% 99.79% 99.80% 
XGBoost 99.63% 100.00% 99.79% 99.84% 

A2_test RF 95.71% 93.41% 94.55% 94.61% 
SVM 90.21% 99.40% 94.58% 96.21% 
XGBoost 74.55% 100.00% 85.42% 88.62% 

A3_test RF 93.17% 96.85% 94.98% 94.87% 
SVM 85.14% 96.53% 90.69% 89.82% 
XGBoost 86.36% 95.48% 90.69% 90.20% 

A4_test RF 82.46% 98.95% 89.95% 88.95% 
SVM 84.79% 96.84% 90.42% 89.74% 
XGBoost 79.81% 89.47% 84.37% 83.87%  

Fig. 4. Accuracy versus the number of features.  
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Fig. 5. Variation of different feature subsets under different classifiers.  

Table 5 
Comparison of the time taken to train the model.   

Train time (s) 

RF SVM XGBoost 

Original data 0.36253 0.19948 0.30471 
Feature-selected data 0.36045 0.18550 0.24963 
Pseudo-sample processed data 0.35087 0.17854 0.21674  Fig. 6. Performance of the three classification algorithms.  
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constructed according to the principle of a 50/50 split between normal 
data and icing data. The same method is used to extract data from the 
rest three wind turbines, A1, A3 and A4, to form the new test sets 
A1_test, A3_test, A4_test. The feature subsets of the training and testing 
sets are the same as those extracted in Section 4.2.2. Fig. 7 shows the 
icing diagnosis accuracy of the three typical models after feature 
extraction and pseudo-sample processing. The results show that the 
average accuracy of the three typical classification models, RF, SVM and 
XGBoost, increase by 8.25%, 7.86% and 14.07%, respectively. Such 
trend indicates the proposed method is beneficially in dealing with 
small-sample data. 

5. Conclusions 

This paper presents an effective data pre-processing method for wind 
turbine blade icing diagnostics. Such a method can address the existing 
difficulties in dealing with the high-dimensional, complex wind turbine 
SCADA data, such as feature selection, data imbalance and the improper 
data labelling. Specifically, we use RFECV to dissect the influence degree 
of various SCADA features on the diagnostic model, select the most 
compelling features, and calibrate the pseudo-samples. TSVM is then 
implemented to regenerate the pseudo-samples to fully consider the pre- 
icing and post-icing periods. The effectiveness of the proposed method is 
systematically examined using the three most commonly used classifiers 
algorithms, i.e., Random Forest (RF), Support Vector Machine (SVM), 
and XGBoost, for four utility-scale wind turbines and further examined 
for the applications in small-sample data.  

(1) The best combination of features obtained based on the SVM- 
RFECV algorithm effectively improves the icing diagnosis accu-
racy by avoiding the construction of complex features and 
simplifying feature extraction. For the three test wind turbines, 
the icing diagnosis accuracy of the three algorithms is improved 
by 2.06% on average. 

(2) The pseudo-sample processing method based on the TSVM algo-
rithm uses the SCADA data before and after absolute icing and 
effectively extracts the icing information from this data. 
Compared to the original data, the icing diagnosis accuracy of the 
three algorithms is improved by an average of 3.88%.  

(3) The proposed methods based on the original feature combination 
and TSVM pseudo-sample data pre-processing are further vali-
dated on a small sample dataset. The results showed that the 
proposed methods have significant advantages, with an average 
improvement of 10.06% in the accuracy of the three algorithms. 

The proposed model is suitable for utility-scale inland wind turbines. 
It should be cautioned to apply the proposed model to the offshore wind 
turbine icing diagnostics, and the small-scale wind turbines. 
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