top of page



Advanced Flow Diagnostics

Digital image projection technique to quantify 3-dimensional geometry of transient water runback behaviors


Processed images

Related publications​

Particle image velocimetry technique characterizes the flow structures around an ice accreting airfoil


Instantaneous PIV measurements 


Aerodynamic penalties

Related Publications:

  •  L. Gao, Y. Liu, W. Zhou, and H. Hu. An experimental study on the aerodynamic performance degradation of a wind turbine blade model induced by ice accretion process. Renewable Energy. 2019. 133(4): 663-675.

Infrared thermometry technique to real the heat transfer process associated with the dynamic icing


High-speed Imaging of Glaze Ice Formation


High-speed imaging for rime ice formation


Infrared imaging for surface temperature

Related Publications:

  • L. Gao, Y. Liu, H. Hu. An experimental investigation of dynamic ice accretion process on a wind turbine airfoil model considering various icing conditions. International Journal of Heat and Mass Transfer. 2019. 133: 930-939.

Drone imaging system to measure the blade ice structures for utility-scale wind turbines


Related Publications:

  • L. Gao, H. Hu, Wind turbine icing characteristics and icing-induced power losses to utility-scale wind turbines, Proc. Natl. Acad. Sci. 118 (2021) e2111461118. https://doi:10.1073/pnas.2111461118 

  • L. Gao, T. Tao, Y. Liu, and H. Hu, A field study of ice accretion and its effects on the power production of utility-scale wind turbines. Renewable Energy. 167 (2021) 917-928.

Scanning LiDARs for wind turbine wake studies in a large-scale wind farm. 


LiDARs (left) and velocity contours of wind turbine wakes. Stars show the locations of wind turbines.

Real-World Solutions

Ice mitigation strategies for wind turbine applications


Icing process (Reference)


Leading-edge heating (30% of the chord length)


Superhydro-/ice-phobic coating


Heating-coating hybrid  (~90% energy saving)

Related Publications:

  • L. Gao, Y. Liu, L. Ma, H. Hu.  A hybrid strategy combining minimized leading-edge electric-heating and superhydro-/ice-phobic surface coating for wind turbine icing mitigation. Renewable Energy. 2019. 140: 943-956.

  • L. Ma, Z. Zhang, L. Gao, Y. Liu, H. Hu. Bio-inspired icephobic coatings for aircraft icing mitigation: A critical review. Reviews of Adhesion and Adhesives. 8 (2020) 168–199.

  • L. Ma, Z. Zhang, L. Gao, Y. Liu, H. Hu. An exploratory study on using Slippery-Liquid-Infused-Porous-Surface (SLIPS) for wind turbine icing mitigation. Renewable Energy. 162 (2020) 2344–2360. 

Icing forecasting for wind turbine icing loss and potential risk

ice forecast.png
ice mass.png

Related Publications:

  • L. Gao, T. Dasari, J. Hong, Wind farm icing loss forecast pertinent to winter extremes, Sustain. Energy Technol. Assessments. 50 (2022) 101872. https://doi:10.1016/j.seta.2021.101872.  

  • L. Swenson, L. Gao, J. Hong, L. Shen, An efficacious model for predicting icing-induced energy loss for wind turbines. Applied Energy. 305 (2022) 117809. https://doi:10.1016/j.apenergy.2021.117809

  •  T. Tao, Y. Liu, Y. Qiao, L. Gao, J. Lu, C. Zhang, Y. Wang, Wind turbine blade icing diagnosis using hybrid features and Stacked-XGBoost algorithm. Renewable Energy 180 (2021) 1004–1013. https://doi:10.1016/j.renene.2021.09.008

  •  L. Gao, J. Hong. Wind turbine performance in natural icing environments: A field characterization. Cold Regions Science and Technology. 181 (2020) 103193.

Impacts of complex atmospheric boundary flows on wind turbine power production and structural response

wind veer.png

Wind veer

Turbulence influence on tower and blade loadings 

Related Publications:

  • L. Gao, S. Yang, A, Abraham, J. Hong, Effects of inflow turbulence on the structural response of wind turbine blades. Journal of Wind Engineering & Industrial Aerodynamics. 2020.199: 104137. 

  • L. Gao, B. Li, J. Hong. Effect of wind veer on wind turbine power generation. Physics of Fluids (2020). 33 (2020) 015101.

bottom of page