Research

Triangle.jpg

Advanced Flow Diagnostics

Digital image projection technique to quantify 3-dimensional geometry of transient water runback behaviors

IDP-Principle.png
Pn5v15_2hz10sp_50s.gif

Processed images

Related publications​

Particle image velocimetry technique characterizes the flow structures around an ice accreting airfoil

Picture3.jpg

Instantaneous PIV measurements 

Fig_Cl_Clt0.jpg
Fig_Cd_Cdt0.jpg

Aerodynamic penalties

Related Publications:

  •  L. Gao, Y. Liu, W. Zhou, and H. Hu. An experimental study on the aerodynamic performance degradation of a wind turbine blade model induced by ice accretion process. Renewable Energy. 2019. 133(4): 663-675.  https://doi.org/10.1016/j.renene.2018.10.032

Infrared thermometry technique to real the heat transfer process associated with the dynamic icing

DU96_Glaze_resize.gif

High-speed Imaging of Glaze Ice Formation

DU96_Rime_resize.gif

High-speed imaging for rime ice formation

IR.png

Infrared imaging for surface temperature

Related Publications:

  • L. Gao, Y. Liu, H. Hu. An experimental investigation of dynamic ice accretion process on a wind turbine airfoil model considering various icing conditions. International Journal of Heat and Mass Transfer. 2019. 133: 930-939. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.181

Drone imaging system to measure the blade ice structures for utility-scale wind turbines

Drone.jpg

Related Publications:

  • L. Gao, H. Hu, Wind turbine icing characteristics and icing-induced power losses to utility-scale wind turbines, Proc. Natl. Acad. Sci. 118 (2021) e2111461118. https://doi:10.1073/pnas.2111461118 

  • L. Gao, T. Tao, Y. Liu, and H. Hu, A field study of ice accretion and its effects on the power production of utility-scale wind turbines. Renewable Energy. 167 (2021) 917-928. https://doi.org/10.1016/j.renene.2020.12.014

Scanning LiDARs for wind turbine wake studies in a large-scale wind farm. 

Picture7.jpg
Picture7.jpg

LiDARs (left) and velocity contours of wind turbine wakes. Stars show the locations of wind turbines.

Real-World Solutions

Ice mitigation strategies for wind turbine applications

ID12_Ref_AoA0_resize2.gif

Icing process (Reference)

ID12_30H_AoA0_resize2.gif

Leading-edge heating (30% of the chord length)

ID15_SHS_AoA0_resize2.gif

Superhydro-/ice-phobic coating

ID15_SHS&30H_AoA0_resize2.gif

Heating-coating hybrid  (~90% energy saving)

Related Publications:

  • L. Gao, Y. Liu, L. Ma, H. Hu.  A hybrid strategy combining minimized leading-edge electric-heating and superhydro-/ice-phobic surface coating for wind turbine icing mitigation. Renewable Energy. 2019. 140: 943-956.  https://doi.org/10.1016/j.renene.2019.03.112

  • L. Ma, Z. Zhang, L. Gao, Y. Liu, H. Hu. Bio-inspired icephobic coatings for aircraft icing mitigation: A critical review. Reviews of Adhesion and Adhesives. 8 (2020) 168–199. https://doi.org/10.7569/RAA.2020.097307

  • L. Ma, Z. Zhang, L. Gao, Y. Liu, H. Hu. An exploratory study on using Slippery-Liquid-Infused-Porous-Surface (SLIPS) for wind turbine icing mitigation. Renewable Energy. 162 (2020) 2344–2360. https://doi.org/10.1016/j.renene.2020.10.013 

Icing forecasting for wind turbine icing loss and potential risk

ice forecast.png
ice mass.png

Related Publications:

  • L. Gao, T. Dasari, J. Hong, Wind farm icing loss forecast pertinent to winter extremes, Sustain. Energy Technol. Assessments. 50 (2022) 101872. https://doi:10.1016/j.seta.2021.101872.  

  • L. Swenson, L. Gao, J. Hong, L. Shen, An efficacious model for predicting icing-induced energy loss for wind turbines. Applied Energy. 305 (2022) 117809. https://doi:10.1016/j.apenergy.2021.117809

  •  T. Tao, Y. Liu, Y. Qiao, L. Gao, J. Lu, C. Zhang, Y. Wang, Wind turbine blade icing diagnosis using hybrid features and Stacked-XGBoost algorithm. Renewable Energy 180 (2021) 1004–1013. https://doi:10.1016/j.renene.2021.09.008

  •  L. Gao, J. Hong. Wind turbine performance in natural icing environments: A field characterization. Cold Regions Science and Technology. 181 (2020) 103193. https://doi.org/10.1016/j.coldregions.2020.103193

Impacts of complex atmospheric boundary flows on wind turbine power production and structural response

wind veer.png
Structural.JPG

Wind veer

Turbulence influence on tower and blade loadings 

Related Publications:

  • L. Gao, S. Yang, A, Abraham, J. Hong, Effects of inflow turbulence on the structural response of wind turbine blades. Journal of Wind Engineering & Industrial Aerodynamics. 2020.199: 104137. https://doi.org/10.1016/j.jweia.2020.104137 

  • L. Gao, B. Li, J. Hong. Effect of wind veer on wind turbine power generation. Physics of Fluids (2020). 33 (2020) 015101. https://doi.org/10.1063/5.0033826